A. Magnesite
B. Fireclay
C. Dolomite
A. 1520
B. 1380
D. 1915
A. Thickness of plastic layer
C. Swelling index
D. Gray-king index
A. Cuprous chloride
B. None of these
D. Potassium hydroxide
A. 70
B. 50
C. 30
A. Carbon, volatile matter, ash & moisture
B. Carbon, sulphur, volatile matter & ash
D. Carbon, ash, sulphur & nitrogen
A. Boghead
B. Non-banded
C. Bright
B. Decreases the abrasion resistance of coke
C. Causes brittleness in steel
D. Decreases the hardness of coke
A. Thermal conductivity
B. Refractoriness (< 1700C)
C. Resistance to thermal shock
A. Electric arc furnace roof
B. Dome of blast furnace stoves
C. Glass melting furnaces
A. Facilitates by-products recovery
B. Gives larger yield of coke (around 85%) as compared to by-product ovens
C. Produces coke with very poor strength
A. Hot scarfing of steel slabs
B. Mixing with blast furnace gas
D. Steel ladle drying
A. Gas yield is less
C. Tar yield is more
D. Ignition temperature of coke produced is less
A. Aliphatic compounds
B. Olefins
C. Paraffins
A. Ash content in the fuel
B. Incomplete combustion
D. Unburnt carbon in flue gases
B. 60 KV AC
C. 230 V AC
D. 230 V DC
B. 10
C. 80
D. 25
A. Methane percentage in the coke oven gas increases
B. Tar yield increases
D. Hydrogen percentage in the coke oven gas decreases
A. 300
C. 150
D. 1100
A. Low fusion point of ash
B. High ash content
C. High sulphur
B. 30
C. 95
D. 50
A. Coalification
B. Variation of coal quality with depth
D. Origin of petroleum oil
A. Under no circumstances
B. If its carbon content is very low
C. If its ash content is zero
A. Storage in compressed piles
B. Absence of porous or friable particles
D. All A., B. and C.
A. Ceramic recuperators
B. Muffle furnace
C. Zinc smelting furnace
A. Moisture loss
C. Dry gas/stack gas loss
D. Incomplete combustion
A. Resistance to slag attack
B. Spalling resistance
D. Electrical conductivity
A. 2,500
B. 35,000
D. 25,000
B. Autocatalytic
C. Endothermic
D. None of these
A. O2
B. CO2
D. C
A. Furnace oil
C. Kerosene
D. Semi-coke
A. Depends on the nature of slag & refractory
C. Decreases, if defective joints & cracks exist in the refractory
D. Decreases at higher temperature
A. Calorific value
B. Yield of carbonised products
D. Caking index
A. Incomplete combustion
C. High oxygen in flue gas
A. Moisture content
B. Colour
D. Ash content
A. 500
C. 1500
D. 20000
B. Are bonded with lime and clay
C. (Free from silica) have better thermal fatigue resistance than silica and magnesite refractories.
D. Are resistant to basic slag
A. Breast wall
B. Baffle
D. Armouring
A. May increase or decrease depending on the type of fuel
B. Remain same
C. Decreases
A. 71%
A. Blast furnace gas
B. Producer gas
D. Water gas
A. None of these
B. Shrinkage ability
D. Spalling rate
B. Boys
D. Junkers
A. Finding out combustion efficiency
C. Gravimetric analysis of flue gas
D. Direct determination of nitrogen in flue gas by absorbing it in ammoniacal cuprous chloride
A. Remain constant
C. Burn the lumpy coal
D. Pneumatically convey the pulverised coal
B. Subjected to temperature fluctuation
D. Subjected to high load
A. Hand moulding
B. Extrusion
D. pressing/machine moulding
A. Ignition temperature
C. Flame length
D. Quantity of flue gas
Showing 5851 to 5900 of 8709 mcqs