A. Volume
C. Both A. & B.
D. Neither A. nor B.
B. Low temperature carbonisation
C. Medium temperature carbonisation
D. Heating the coal in an oven in presence of air
A. Reheating furnaces
C. Soaking pits
D. Roof lining of basic open hearth & other basic furnaces
B. 5
C. 40
D. 55
A. Heat release rate (thus requiring smaller combustion chamber)
B. Adiabatic flame temperature
D. Calorific value, cleanliness and relatively low distribution cost (due to its low specific gravity)
B. High alumina
C. Superduty fireclay
D. Silica
A. Has poor electrical conductivity at high temperature
B. Cannot be used as an insulator
D. Does not react with basic slags
B. None of these
C. Benzol
D. Tar
A. SiO2
B. Al2O3
D. CaO
B. Magnesia
C. None of these
D. Zirconia
A. 20 and 80
C. 50 and 50
D. 60 and 40
A. Thoria
B. Beryllia
C. Carborundum
A. Using low c.v. fuels
C. Oxygen enrichment of combustion air
D. Maintaining proper draft in the furnace
A. Blast furnace coke
B. Wood charcoal
D. Gasoline
A. It reduces its flame temperature tremendously
B. It reduces its calorific value tremendously
D. There are chances of explosion during preheating
A. 1 to 2
B. 20 to 40
C. 3 to 4
A. Contains more than 90% durain
C. Contains more than 90% fussain
D. Is non-coking
B. 1520-1630
C. 1630-1670
D. > 2000
A. 35-40
C. > 94
D. 80-85
A. CO2 & H2
B. CO & N2
D. CH4 & H2
A. Negligibly
B. Partially
C. Fully
A. All A., B. and C
C. Low preheat of air
D. High excess air
A. Permits the use of high ash content coal
B. Permits the use of low fusion point ash coal
C. All A., B. and C.
A. Neutral in nature
B. Made by mixing 30% Chromite and 70% Periclase
D. Acidic in nature
A. All A., and B. and C.
B. Aluminium melting furnaces
D. Inner lining of L.D. converter
A. Less fusion point
B. Better spalling resistance
D. Neither A. not B.
A. Atmospheric pressure gasification of coal (e.g., in Kopper-Totzek gasifier)
B. Partial combustion of coal
C. High pressure gasification of coal (e.g. in Lurgi gasifier)
A. Washing
B. Storage
D. Transportation and handling
B. 95 and 100
C. 40 and 70
D. 25 and 97
A. None of these
B. Ash and heating value around 13, 200 BTU/1b
C. Fixed carbon and heating value around 132 BTU/1b
A. CO, O2, CO2
C. CO2, CO, O2
D. O2, CO2, CO
A. 10000
B. 5000
C. 300
A. Moving
C. Fluidised
D. Fixed
A. Chromite
B. Silicon carbide
D. Graphite
A. Gasification
B. Coalification
C. Deoxidation
A. Bauxite bricks
C. Silica bricks
D. Fireclay bricks
C. RUL
D. Fusion point
A. Firebrick
B. Magnesite
C. Aluminous firebrick
A. High spalling resistance
C. High RUL (1600C) and refractoriness (> 2000C)
D. Low co-efficient of expansion
A. Higher amount of methane
B. Lower amount of hydrogen
D. Higher amount of both methane and hydrogen
A. 800-1000
B. 2400-2600
D. 1000-1200
A. 80
B. 8
C. 48
A. 500
B. 750
D. 60
A. Lower calorific value at constant pressure
B. Net calorific value at constant volume
D. Gross calorific value at constant pressure
A. 18
B. 6
D. 12
B. Gives smokeless burning
D. Burns completely
A. 50
C. 500
D. 5000
A. MgAl2O3.2H2O
C. MgAl2O3
D. MgSO4
A. Resistance to slag attack increases
B. Spalling resistance reduces
A. May increase or decrease
B. Decreases
D. Remain same
Showing 5801 to 5850 of 8709 mcqs