A. Zinc sulphate
B. Barium chloride
D. Barium sulphate
A. Polycarboxylate
B. Zinc phosphate
D. Glass ionomer
A. Have longer setting times
B. Require heavy compection forces
D. Require more mercury
A. Plastic bowl
B. Glass bowl
D. Metal bowl
A. Gamma 3
B. Gamma 1
D. Epsilon 1
A. Decreased compressive, increased strength
B. Decreased compressive, decrease tensile strength
D. Increased compressive, increased tensile strength
A. 75 85
B. 55 65
D. 85 95
A. 8 years
C. 6 years
D. 2 years
A. B1
B. y
D. y2
A. Creep value of all the above mentioned alloys is same
C. Single composition alloys
D. Admix alloy
A. Needs no squeezing of excess mercury
B. High strength
C. Sets quickly
B. High fusion temperature
C. High fusion expansion
D. Linear coefficient of thermal expansion more than that of metal
A. 510 Mpa
B. 140 Mpa
D. 260 Mpa
A. Mercury vapour
B. Ingestion while removing old amalgam
D. Skin contact
A. Phosphoric acid
C. Acetic acid
D. Alginic acid
A. Class I casting gold
B. Class IV casting gold
D. Non cohesive gold
A. mm
B. 1.5 mm
D. mm
A. Shear stress
B. Tensile stress
D. Impact stress
A. Same as porcelain
B. More than porcelain
C. Less than porcelain
B. Amalgam alloy
C. Speed of amalgamator
D. Trituration time
A. 5-Apr
B. 4-Mar
D. 8-Jul
B. 70 to 75 degree F
C. 51 to 54 degree F
D. 70 to 75 degree C
B. Pure gold
C. Microfilled composite resins
D. Silver amalgam
A. Requires least amount of mercury
C. Has tensile strength both at 15 min & 7 days comparable to high copper unicompositional alloy
D. Has low creep
B. Improper condensation
C. High firing temperature
D. Low temperature during glazing
C. GIC
D. Zinc phosphate
A. It is not necessary in moderately deep cavities under glass ionomer restoration
B. Do not provide thermal or electric insulation
C. Protect the pulp from reaction products leaching out of restoration
A. Mulling
C. Trituration
D. Carving
A. Ag
C. Cu
D. Pd
A. Silicate cement
B. Polycarboxylate cement
C. Glass ionomer cement
A. Ionic copper
B. Silver cyanide
D. Copper cyanide
B. Zinc acetate dehydrate
D. Calcium chloride
B. 90%
C. 80%
D. 60%
A. Glass ionomer
B. Silico-Phosphate cement
D. Polycarboxylate cement
A. Altering Hg-Alloy ratio
C. Using spherical particles
D. Lathe cut alloy
A. None of the above
B. Ethyl alcohol
C. Phosphoric Acid
A. Its edge strength is greater
C. It has increased tensile and compressive strength
D. Mercury content in the final restoration is less
B. Achieve a workable mass of amalgam in minimum time
C. Pulverize pelletes into particles to aid in attack by mercury
D. Remove oxides from powder particle surface
B. In open air
C. When several layer are fired simultaneously
D. Under minimum pressure
B. Emery
C. Pumice
D. Garnet
A. Spherical gold
B. Electra alloy
C. Gold foll
A. Zn
B. Ag
D. Hg
A. Zn(OH)2 + ZnO
C. Eugenol + ZnO
D. ZnCl2 + Eugenol
B. Zinc phosphate cement
A. Glass inomer cement
B. Zinc polycarboxylate
C. Polymer reinforced ZOE cement
A. Zinc oxide Eugenol cement
B. Glass Ionomer cement
D. Resin cement
A. Sponge gold
C. Mat gold
D. Crystalline
B. 15 microns
C. 50 microns
D. 100 microns
A. Infusium
C. Cerestore
D. Leucite
A. 0-6%
B. 20-30%
D. 10-12%
Showing 551 to 600 of 627 mcqs