A. 30 N
B. 25 N
D. 40 N
A. L/d
C. L/2d
D. (L/3d)
A. 3.0t compression
B. 4.0t compression
C. 0.5t tension
A. 100 t tensile
C. Indeterminate
D. 100 t compressive
A. 4.5 mm
B. 5.5 mm
D. 4.0 mm
A. (p/bd) [1 + (ey. y/d) + ( ex. x/d)]
B. p [1 + (6ey. y/b) + (6ex. x/ b)]
C. (p/bd) [1 + (6ey. y/d) + (6ex. x/b)]
A. a/2
B. a
D. a/3
A. Three bars intersecting at a point
C. Three parallel bars
D. Two bars
B. 1 cm
C. 1.5 cm
D. 2.5 cm
B. 7-Jan
C. 7-Mar
D. 5-Feb
B. 150/EIc
C. 100/EIc
D. 50/EIc
B. None of these
C. Tensile stress
D. Shear stress
A. Modulus of Rigidity
B. Shear Modulus
C. Modulus of Elasticity
A. Method of joints
C. Method of sections
D. Graphical method
B. L/5
C. L/2
D. L/4
A. 1
B. 2-Jan
C. 4-Jan
A. Rankines theory
B. Haigs theory
D. St. Venants theory
A. 3-Jan
D. 4-Jan
A. 10 m
B. 12 m
D. 14 m
A. end, is
B. A uniforml 4/3
C. non of these
B. 0.001
C. 0.003
D. 0.002
A. 1.6
B. 1.7
C. 1.4
B. T/M
C. M/T
D. 2T/M
A. If tensile stress is equal to axial stress, the section experiences compressive stress
B. The moment of inertia is calculated about the axis about which bending takes place
C. If tensile stress is less than axial stress, the section experiences compressive stress
B. Both the ends are hinged
C. One end is fixed and other end is free
D. One end is fixed and other end is hinged
A. Horizontal thrust is wl2/8h
B. B.M. will be zero throughout
D. S.F. will be zero throughout
A. All the above
B. Its mean diameter will decrease
C. Its number of coils will increase
A. (IX IY)/2
B. (I /I )
C. (IX + IY)/2
B. 4WDn/d4N
C. 4WD3n/d4N
D. 4WDn/d4N
A. Both the ends are fixed
B. ( /2) t fs
C. ( /4) fs
D. D2t fs
B. Zero
C. 3
D. 2
C. 2
D. 3
A. 2-Jan
B. 5-Jan
D. 3-Jan
A. 1.125 cm3
B. 2.125 cm3
C. 4.125 cm2
A. 60
B. 30
C. 45
A. Are supported at outer end
B. Are wound by applying a torque
D. Consist of uniform thin strips
A. 0.404
C. 0.505
D. 0.303
A. Maximum tensile stress at the section
B. Maximum compressive stress at the section
C. Depth of the section
A. St. Venants theory
C. Von Mises theory
D. Guests or Trecas theory
A. F/A
B. F/2A
D. 2F/3A
A. 10-Jan
B. 12-Jan
D. 8-Jan
A. Radius of gyration divided by area of cross-section
B. Area of cross-section divided by radius of gyration
C. Area of cross-section divided by least radius of gyration
A. Magnitude
B. Point of application
D. Direction
A. The bending stress in a section is zero at its neutral axis and maximum at the outer fibres
C. The shear stress is zero at the outer fibres and maximum at the neutral axis
D. The bending stress at the outer fibres, is known as principal stress
A. 4t compression
B. 5t compression
D. 5t tension
A. The inner most fibre of the section
B. The neutral fibre of the section
D. The fibre everywhere
A. Obeys Hookes law
B. Behaves in an elastic manner
C. Regains its original shape on removal of the load
A. 75 N/m2
B. 75000 N/m2
C. 750 N/m 2
A. Zero
B. 1
Showing 101 to 150 of 168 mcqs