A. Power
B. Fertiliser
D. Cement
B. Periclase
C. Corundum
D. Bauxite
B. Transformed to Cristobalite on heating above 1470C
C. Converted to Tridymite on firing between 870 to 1470C
D. Stable form of silica upto 870C
A. Pottery furnace
B. Glass melting furnace
D. Crucibles
B. Chemical composition
C. Presence of impurities like iron & alkali
D. Physical structure
A. Low duty firebricks
C. Graphite blocks
D. Silica bricks
A. MgCO3
C. ZrSO4
D. Amorphous magnesite
A. Increased by the addition of basic oxides
B. Not affected by the addition of basic oxides
C. Always more than 2500C
A. Firebrick
C. Aluminous firebrick
D. Magnesite
A. Dolomite
B. Chrome magnesite
C. Magnesite
A. Cooling down
B. Warming up
D. Neither A. nor B.
A. Borides
C. Nitrides
D. Carbides
B. Chromite
C. Graphite
D. Silicon carbide
A. Magnetic switches
B. Transformers
D. Television sets
A. Bottom of soaking pits
B. Between acid & basic linings in basic open hearth furnaces to prevent their chemical action
C. h each other
E. Neither A. and B.
A. High thermal conductivity
B. Low porosity
C. Both A. and B.
A. 1915
C. 1380
D. 1520
B. Acidic refractory
C. Fired at a temperature of 600C only
D. Basic refractory
A. 250
B. 450
D. 150
A. None of these
B. RUL
D. Fusion point
A. Impart greater spalling resistance
C. Enhance the strength of fired refractories
D. Reduce its shrinkage on heating
A. Chrome magnesite
B. Silica
C. Zirconia
A. MgAl2O3
B. MgAl2O3.2H2O
D. MgSO4
A. Electric arc furnace roof
C. Glass melting furnaces
D. Dome of blast furnace stoves
A. Composite material containing both ceramic & metallic constituents
B. Having high strength & resistance to high temperature
C. Used in space vehicles, missiles & nuclear energy plants
B. Furnaces allowed to cool frequently
C. Chimney linings
D. Flues
A. 55
B. 5
D. 40
A. Less shrinkage in heating, decreased apparent porosity & increased specific gravity
B. Less addition of water to get a workable plasticity & lesser time required for drying the raw
D. High strength & thermal spalling resistance
E. ractories and hence increased rate of production
A. Removal of water of hydration
B. Vitrification
C. Development of stable mineral form
A. High spalling resistance
B. Low co-efficient of expansion
C. High RUL (1600C) and refractoriness (> 2000C)
A. Aluminium phosphate
B. Plaster of Paris
D. Lime
A. Bottom hearth of reheating furnace
C. Hearth of soaking pits
D. Burning zone of limestone rotary kilns
A. Crushing strength
B. Resistance to slag
C. Refractoriness
A. Green strength
B. Voids
C. Shrinkage
B. Corrosion by layer of slag
C. Both A. & B.
A. 35
B. 55
C. 5
A. All A., B. and C.
B. High resistance to spalling
C. High strength and density
A. Lining high temperature ceramic kilns
B. High frequency induction furnaces in the form of inductors
C. Making sheaths for thermocouple
A. Low specific heat
B. Greater diffusivity
C. Low thermal co-efficient of expansion
A. Density
C. Specific heat
D. None of these
B. Electrical conductivity
C. Thermal conductivity
B. Baffle
C. Armouring
D. Breast wall
A. Does not react with basic slags
C. Cannot be used as an insulator
D. Has poor electrical conductivity at high temperature
B. Corundum
C. Bauxite
D. Mullite
A. Beehive coke oven
B. Combustion chamber of B.F. stoves
D. Coke oven regenerators
A. 800-1000
C. 2400-2600
D. 1000-1200
A. 500-1000
B. 100-150
C. 50-100
A. Are not resistant to corrosion by slag
C. Exhibit wetting characteristics
D. Exhibit high shrinkage on thermal treatment
A. Are wetted by molten iron
B. All A., B. and C.
D. Are acidic in nature
A. CaO
C. SiO2
D. Al2O3
Showing 101 to 150 of 218 mcqs