A. Naphthenes
B. Aromatics
C. Smoke point
A. 2
B. 1
C. 3
B. Vanadium pentoxide
C. Nickel
D. Silica gel
A. 10000
B. 5000
D. 1
A. Adsorb arsenic from feedstock to catalytic reforming
B. Desulphurise straight run gasoline & kerosene
D. Decolorizes & stabilises cracked gasoline
A. Asphalt
B. Residuum
C. Heavy ends
A. 7.5 to 12.5
B. 0.1 to 0.5
C. 15-20
A. All A., B. & C.
B. Low molecular weight & low boiling point compounds present in petroleum
C. Desirable in catalytic cracking feedstock, because they produce coke
A. Lubricating oil > petrol > diesel > LPG
C. Petrol > diesel > LPG > lubricating oil
D. Petrol > lubricating oil > diesel > LPG
A. Decreases
B. Remain same
D. Either A. or B.
A. Mixed base
B. Naphthenic
C. Paraffinic
A. Equal to the impeller diameter
C. 3/4 of the tank height
D. Twice the tank diameter
A. Light diesel oil
C. Naphtha
D. Petrol
A. None of these
B. Tetramethyllead
C. Ethyl nitrate or acetone
A. 1.6 to 2
B. 1.5 to 3
D. 2.5
A. Viscosity
B. Smoke point
D. Cetane number
A. Kerosene
C. Heavy fuel oil
D. Light gas oil
B. 5
C. 60
D. 15
A. Enhances the desulphurisation process
B. Minimises coke formation
D. Neither A. nor B.
A. Low boiling aromatics
D. None of these
B. Pressure drop on pumping
C. Pour point
D. Viscosity
A. The discharge end of the downcomer must project far enough into the tray liquid so that no
B. If sufficient residence time (around 8 seconds) is not provided to the downcoming liquid in
C. bubbles can enter the open end and by pass the bubble caps
D. The liquid head in the downcomer should not be greater than one half the plate spacing to
E. id flooding
A. Hydrocracking
B. Catalytic polymerisation
D. Catalytic cracking
B. Water content
C. Water absorbing capacity from atmosphere
D. Emulsification tendency
A. Saybolt chromometer
B. Abel apparatus
C. Pensky-Martens apparatus
A. Increase its calorific value
B. Narrow down its explosion limit
D. Reduce its cost
A. 1 to 5
B. 250 to 350
C. 450 to 500
B. None of these
C. Lead susceptibility
D. Octane number
A. H2SO4
B. H3PO4
D. AlCl3
A. Alkylation
B. Hydrotreating
C. Catalytic cracking
A. 40 to 50
C. 1 to 5
D. 30 to 40
A. 0
B. > 1
C. < 1
A. Naphtha
B. Petrol
D. Kerosene
B. CnH2n+2O2 (n ? 6)
C. CnH2n+2O2
D. CnH2n+6O2 (n ? 6)
A. Heat
B. Bacterial action
D. Pressure
B. Causes olefins to combine with each other
C. Converts olefin into paraffin
D. Converts iso-paraffin into olefin
B. Kerosene
C. Diesel
D. Lubricating oil
B. Naphthenes
C. Aromatics
D. Smoke point
B. 38
C. 6
D. 18
A. Kerosene increases its smoke point
C. Diesel increases its cetane number
D. All A., B. and C.
A. Multiple of 5F
B. Multiple of 3F
A. Reduced crude
C. Atmospheric gas oil
D. Vacuum gas oil
B. High purity products can be obtained thereby
C. Lighter/low boiling products are prone to thermal decomposition
E. ompose</strong>
C. Should be low
D. Is the measure of its flash point
A. Not related to aniline point
B. All A., B. & C.
D. Determined by using a test engine
B. 0.84 (% distilled at 204C)
C. 5 mm
D. 10 mm approximately
B. High octane gasoline
C. High cetane diesel
D. Smoke free kerosene
B. Hyperforming
C. Thermofor catalytic reforming
D. Hydroforming
B. 16
C. 28
D. 38
B. Higher yield
C. Both A. and B.
Showing 3451 to 3500 of 8709 mcqs