A. Henrys law
C. None of these
D. Hesss law
B. 0
C. 3
D. 2
A. Data insufficient; cant be computed
B. 22.4
C. 224
B. Specific volume
C. Pressure
D. Temperature
B. ?i = (?F/?ni)T, P
C. ?i = (?A/?ni)T, P, ni
D. ?i = (?A/?ni)T, P
A. Entropy
C. Temperature
D. Internal energy
A. Critical temperature
B. Mass
C. Volume
A. Pressure
B. Initial concentration of the reactant
A. Temperature and pressure only
C. Temperature only
D. Temperature, pressure, liquid composition xi and vapour composition yi
A. Otto engine
C. Carnot engine
D. Diesel engine
A. None of these
B. Turbine
C. Heat engine
A. -94 kcal
C. < 94 kcal
D. > -94 kcal
B. 3
C. 2
D. 0
C. Desuperheated
D. Non-condensable
C. Both A. & B.
D. Neither A. nor B.
A. Law of corresponding state
C. Arrhenius hypothesis
D. Kopps rule
A. < 0
B. < 1
B. Activity co-efficient
C. Fugacity
D. Free energy
A. Less
B. Same
C. More or less depending upon the extent of work done
B. ?+ R ln f
C. ? + R/T ln f
D. ? + T ln f
A. Concentration
B. Pressure
C. Molal heat capacity
A. Vaporisation
D. Fusion
A. Vapour pressure of liquid
B. Departure of gas phase from ideal gas law
A. Polytropic
B. Isobaric
D. Adiabatic
B. Momentum
D. Mass
B. Equals 0.24 kcal/kmol K
C. Equals 1 kcal/kmol K
D. Becomes zero
A. 1
C. 1
A. Kirchoffs
B. None of these
D. Lavoisier and Laplace
A. Lewis-Randall
B. Margules
C. Van Laar
A. In standard state
C. At high pressure
D. At low temperature
A. Irreversible isothermal
D. Reversible isothermal
A. Liquids
B. Gases
C. All (A), B. & (C)
A. Specific heat at constant volume (Cv)
C. Specific heat at constant pressure (Cp)
B. System and surroundings temperature be equal
C. System and surroundings pressure be equal
D. None of these
B. Enthalpy
C. Internal energy
D. Entropy
A. Process must be isobaric
B. Temperature must decrease
C. Process must be adiabatic
A. All of the above
B. Very low temperature
D. Very high pressure
D. 3
A. an data-mce-type="bookmark" style="width: 0px;overflow: hidden;line-height: 0" class="mce_SELRES_start">?</span>A. ?
C. #NAME?
A. Does not depend upon temperature
B. Is independent of pressure only
C. Is independent of volume only
A. Temperature is constant
B. Cooling occurs
C. Pressure is constant
C. Composition
B. Unity
D. Infinity
A. ds = 0
C. ds <0
D. ds = Constant
A. Evaporation of water
B. Melting of ice
C. Condensation of alcohol vapor
A. The inversion temperature is same for all gases
B. A gas may have more than one inversion temperatures
D. The inversion temperature is the temperature at which Joule-Thomson co-efficient is infinity
C. Expansion of an ideal gas against constant pressure
D. Atmospheric pressure vaporisation of water at 100C
A. Van Laar
C. Gibbs-Duhem
D. Margules
A. O2
C. N2
D. CO2
A. T and Z
B. T, P and Z
D. T
Showing 8101 to 8150 of 8709 mcqs