B. Inversely as the square of diameter
C. Inversely as the velocity
D. As velocity
A. Inertial stress to drag stress
C. Inertial stress to gravitational stress
D. Gravitational stress to drag stress
A. Size
B. Surface properties
D. Neither A. nor B.
B. Mach
C. Weber
D. Froude
A. Dilatant
B. Pseudo plastic
C. None of these
A. Volute
C. Sump
D. Submerged
A. Venturimeter
B. Anemometer
C. Orificemeter
A. Gate
B. Globe
C. Butterfly
A. Coupling
C. Expansion joint
D. Flange
A. Permanently resists distortion
C. Is incompressible
D. Continuously expands till it fills any container
A. Cd . ?(2gH)
C. Cc . ?(2gH)
D. Cv . Va
A. None of these
B. 100,000
C. 10,000
A. Check valve
B. Plug-cock
C. Globe valve
A. Speed of
B. Fluid velocity leaving
D. Radius of
A. ?Re
C. Re
D. 1/Re
A. At
B. Above
D. Either above or below; depends on the liquid density
A. Cd = Cc/Cv
B. None of these
D. Cd = Cv/ Cc
A. The continuity equation is satisfied
C. The fluid is non-viscous
D. The flow is rotational and incompressible
B. Gear
C. Diaphragm
D. Reciprocating
A. Unsteady non uniform
B. Steady uniform
D. Unsteady uniform
A. 1
C. 2
D. 0.5
A. Larger than
C. Same as
D. Twice
A. Roughness
B. Size
C. Material density
A. In laminar flow
C. At points of abrupt changes in the flow directions
D. In case of boundaries experiencing form drag
A. (Speed)0.5
C. (Speed)3
D. (Speed)2
A. Transition
B. Laminar
C. Turbulent
A. Froude number
C. Galileo number
D. Drag co-efficient
B. Elbow
C. Reducer
D. Tee
A. Kinetic energy balance in laminar flow
C. Mechanical energy balance in turbulent flow
D. Mechanical energy balance in boundary layer
B. Gravity
C. Viscous
D. None of these
A. Inside diameter
D. Schedule number
A. Decrease in effect
B. Develops noise
C. Increase in thrust
A. 0.5
C. 1
D. 1.5
A. M is above G
D. M & G coincide
A. 700
C. 630
D. 7000
C. Density
D. Pressure
A. Boundary friction
D. Expansion of flow after sudden contraction
A. 0.33
A. Increases the volumetric efficiency of the pump
C. Smoothens the flow by avoiding pulsations
D. Saves the pump from the danger of cavitation
A. ?ma = ?m ?v
C. ?ma ?m ?v = ?o
D. ?v = ?m ?ma
B. Deliver liquid at uniform pressure
C. Can be operated with delivery valve closed
D. Can handle slurries more efficiently
A. Either more or less than
B. Equal to
D. Less than
A. Depends on the depth of the submergence of the floating body
B. For non-symmetrical bodies is not vertical
A. Outlet pressure low
B. Outlet pressure high
C. Inlet pressure low
A. Laminar
B. Transition
D. Viscous
A. Piston
C. Centrifugal
D. A group of vacuum
B. Less
C. More or less, depending on the type of particle
D. Equal
A. 10000 P/S
B. 100 P/S
C. 1000 S/P
A. Data insufficient to predict
B. Same power as
D. More power than
A. Cavitation
B. Bearing losses
C. Disk friction
Showing 6501 to 6550 of 8709 mcqs