A. Reforming
B. Gasification
C. Cracking
B. 70
C. 50
D. 85
A. Exothermic
B. Autocatalytic
C. Catalytic
A. Difference in gross & net calorific value
B. Sulphur content
D. Calorific value
A. Calorific value
B. Caking power
D. Neither A. nor B.
A. 3,000
B. 30,000
C. 30
A. Endothermic
B. None of these
D. Auto catalytic
B. Fine sizes without the presence of any lump
C. Large heaps with small surface to volume ratio
D. Closed space without any ventilation facility
A. 15000
C. 4000
D. 1000
A. None of these
B. Moisture, sulphur, nitrogen & fixed carbon
D. Moisture, ash, sulphur & volatile matter
B. Decrease in its carbon & hydrogen content
C. Increase in its oxygen content
D. Decrease in its caking power & calorific value
B. Fixed
C. Entrained
D. Fluidised
A. Higher carbon monoxide content
B. Lower carbon dioxide content
C. None of these
A. 7.5
B. 10.5
C. 14.5
A. Thick fire bed and preheated primary air
C. Low reactivity of carbonised residue containing high proportions of iron & sulphur
D. Low forced draught and fuel bed temperature
A. Narrower limit of inflammability
B. Lower ignition temperature
C. Higher calorific value
A. Cant determine CO in flue gas, if it is < 0.2%
B. Gives flue gas analysis on dry basis
D. Determines N2 in flue gas indirectly
A. 14000
B. 12000
C. 16000
A. 0.5
B. 1
C. 0.2
B. 1.05 y
C. 0.95 y
D. 1.8 y
B. Alkaline pyrogallol solution
C. Potassium hydroxide
A. Provides higher thermal efficiency & flame temperature
B. Facilitates combustion with lower excess air
C. Provides better control of furnace temperature
B. Proximate analysis
C. Calorific value
D. Caking index
A. Higher calorific value
B. Lower sulphur content
C. Higher emissivity (0.8-0.9) resulting in higher radiation heat transfer rate
D. Oxygen content
B. CO2
C. CO
D. H2
B. Vitrain
C. Clarain
D. Durain
A. 150-200
B. 70-100
C. 2-Jan
A. Incomplete combustion
D. Smoky flame
B. Iron
C. Moisture
D. Ash
A. CO2 : 6.39, CO : 1.60, O2 : 3.99, H2O:25.96, N2:72.06
C. CO2 : 7.60, CO : 1.90, O2 : 4.75, N2 : 85.74
D. CO2 : 6.26, CO : 1.56, O2 : 3.91, H2O :15.66, N2 : 72.60
A. Increase in its friability
B. Decrease in its caking capacity
D. Reduction in coal size
A. Pulverised coal
C. Coking coal
D. Caking coal
A. CO2
B. CO
A. Solvent recovery from air and gases
C. Decolourisation of sugar
D. Absorption of gases and vapor
B. Low ash
C. High calorific value
D. High ash
B. Sinter making
C. Domestic ovens
D. Cupola in foundries
A. More
B. Less
C. Data insufficient; cant be predicted
A. Remain same
B. Either A. or B., depends on other factors
C. Decreases
A. C + 2H2O ? CO2 + 2H2
C. C + H2O ? CO + H2
A. CO
B. CH4
C. C2H6
A. Preheating of fuel gases & combustion air
B. Adopting proper fuel firing technique & fuel preparation
C. Supplying correct amount of combustion air
C. Attainment of high temperature
D. Attainment of chemical equilibrium
B. M40 > 4% and M10 10% and M10 98% and M10 < 2%
A. Coking coals cannot be used
B. Low carbon conversion efficiency is achieved
C. Entrainment of solids is higher
A. A coking coal
B. A high rank coal
D. A black banded coal which burns with a non-smoky yellowish flame
A. Viscosity
B. Specific gravity
D. Octane number
A. Cyclone separator
B. Wet packed scrubber
D. Washing with monoethanolamine
A. Sulphur content
B. Calorific value
B. Natural gas
C. Coke oven gas
D. Water gas
Showing 51 to 100 of 486 mcqs